<u>Distribution Of Syllabus & Lesson Plan/Teaching Plan</u> (2019-20)

Name of Department: Chemistry

Class:_B.Sc-1st Yr (Sem-1)

Paper: A (Inorganic Chemistry)

Two weeks left for MST tentative and one week for revision /queries for MST

TIME PEROID Week 1	TOPICS TO BE COVERED
Week 1	<u></u>
	Atomic Structure
	ldea of De Broglie matter waves, Heisenberg uncertainity principal atomic orbitals, Schrodinger wave equation, Significance of ψ and ψ² quantum numbers
Week 2	radial and angular wave functions and probability distribution curve shapes of s, p, d orbitals. Aufbau and Pauli exclusion principles, Hund's multiplicity rule
Week 3	Electronic configurations of the elements and ions. Periodic Properties Position of element in the periodic table effective nuclear charge and its calculations.
Week 4	trends in periodic table and applications in predicting and explaining the chemical behavious
Week 5	Chemistry of Noble gases Chemical properties of the noble gases, chemistry of xenon,
Week 6	structure and bonding in xenon compounds.
Week 7	Chemical Bonding - I Covalent Bond-Valence bond theory and its limitations, directional characteristics of covalent bond,
Week 8	various types of hybridization and shapes of simple inorganic molecules and ions. BeF2, BF3, CHi, PF s, SF 6, IF 1, SnCh, XeF 4, BF4-, PF 6-, Snell.
Week 9	Chemical Bonding - II Valence shell electron pair repulsion (VSEPR) theory to NH3, H3O+, SF4, CIF3, ICiz, and H2O
Week 10	MO theory, homonuclear (elements and ions of 1st and 2nd row), and heteronuclear (BO, CN, co+, NO+, CO, CN), diatomic molecules
Week 11	multicenter bonding in electron deficient molecule (Boranes) percentage ionic character from dipole moment and electtonegativity difference
Week 12	Revision and class Test

Principal

Out. Gollege, ROPAR

(AJAY KUMAR)

Head of Chemistry Deptt.

Distribution Of Syllabus & Lesson Plan/Teaching Plan (2019-20)

Name of Department: Chemistry

Class:_B.Sc-1st Yr (Sem-1)

Paper: B (Organic Chemistry)

Two weeks left for MST tentative and one week for revision /queries for MST

TIME PEROID	TOPICS TO BE COVERED
Week 1	Structure and Bonding
,	Hybridization, bond lengths and bond angles, bond energy, localized and delocalized chemical bond
Week 2	Van der Walls interactions, resonance, hyperconjugation, aromaticity, inductive and field effects, hydrogen bonding
Week 3	Mechanism of Organic Reactions Curved arrow notation, drawing electron movements with half- headed and double headed arrows,
Week 4	homolytic and heterolytic bond breaking. Types of reagents of organic reaction. Energy considerations Reactive intermediates-bocations, carbanions, free radicals, carbenes, arynes and nitrenes (with examples).
Week 5	Assigning formal charges on intermediates and other ionic species
Week 6	Methods of determination of reaction mechanism (product analysis, intermediates, isotope effect, kinetic and stereo-chemical studies).
Week 7	Alkanes Isomerism in alkanes, sources, methods offormation (with special reference to Wurtz reaction, Kolbe reaction, Corey-House reaction and decarboxylation of carboxylic acids).
Week 8	physical properties and Mechanism of free radical halogenation of alkanes orientation, reactivity and selectivity.
Week 9	Cyclo alkanes Cycloalkanesnomenclature, chemical reactions, Baeyer's strain theory and its limitations. Ring strain in small rings (ciclopropane and cyclobutane), theory of strain less rings. The case of cyclopropane ring: banana bonds.
Week 10	Dienes And Alkynes Nomenclature and classification of dienes: isolated, conjugated and cumulated dienes. Structure of allenes and butadiene, methods of formation polymerization. Chemical reactions-1,2 and 1,4 additions, Diels-Alder reaction.
Week 11	Nomenclature, structure and bonding in alkynes. Methods of formation. Chemical reactions of alkynes, acidityn of alkynes. Mechanism of electrophilic and nucleophilic addition reactions hydroboration-oxid tion. metal- uctions, oxidation and polymerization
Week 1	Structure and Bonding Hybridization, bond lengths and bond angles, bond energy, localized and delocalized chemical bond
Week 2	Van der Walls interactions, resonance, hyperconjugation, aromaticity, inductive and field effects, hydrogen bonding

Pitnoipal
Cout. College ROPAR

(AJAY KUMAR)
Head of Chemistry Deptt.

<u>Distribution Of Syllabus & Lesson Plan/Teaching Plan</u> (2019-20)

Name Of Department: Chemistry

Class:_B.Sc-1st Yr (Sem-1)

Paper: C (Physical Chemistry)

Two weeks left for MST tentative and one week for revision /queries for MST

Mathematical Concepts Logarithmic relations, curve sketching, linear graphs and calculation of slopes, differentiation of functions like ky of all ginst Joseph
Logarithmic relations, curve sketching, linear graphs and calculation of classes
Logarithmic relations, curve sketching, linear graphs and calculation of classes
- Will X, IOO X
maxima and minima, partial differentiation and reciprocity relations. Integration of some useful/relevant functions permutations and combinations.
Factorials. Probability.
Evaluation of Analytical Data
Terms of mean and median, precision and accuracy in chemical analysis
determining accuracy of methods
improving accuracy of analysis, data treatment for series involving relatively few
measurements, linear least squares curve fitting types of errors standard
deviation, confidence limits, Liquid State
Intermolecular forces, structure of liquids (a qualitative description) Structural differences between solids, liquids and gases Liquid crystals:
Difference between liquid crystal, solid and liquid, Classification, structure of
nematic and eholestric phases. Thermography and seven segment cell
Gaseous State
Postulates of kinetic theory of gases, deviation from ideal behaviour, van der
vaals equation of states, the isotherms of van der Waals equation
relationship between critical constants and van der Waals constants, the law of
corresponding states, reduced equation of state.
Molecular volocitios: Boot macro and a
Molecular velocities: Root mean <u>square</u> , <u>average</u> and most probable velocities. Qualitative discussion of the Maxwell's disconfined of molecular velocities, collision
number, mean free path and collision diameter, Liquifacation of gases (based
on Joule-Thomson effect).
Physical Properties and Molecular Structure
Optical activity, polarization-(Clausius-Mossotti equation), orientation of dipoles in
an electric field, dipole moment. Induced dipole moment, measurement of dipole
moment temperature method and refractivity method
Dipole moment and structure of molecules magnetic properties
paramagnetism, diamagnetism and ferromagnetism.
Revison
_

Principal
Govt. College, ROPAR

(AJAY KÚMAR Head of Chemistry Deptt

<u>Distribution Of Syllabus & Lesson Plan/Teaching Plan</u> (2019-20)

Of Department: <u>Chemistry</u> Class:B.Sc-1st Yr (Sem 2) Name Of Department: Chemistry Class:
Paper: A (Inorganic Chemistry)

Two weeks left for MST tentative and one week for revision /queries for MST

TIME PEROID	TOPICS TO BE COVERED
Week1	Ionic Solids- Concept of close packing, Ionic structures, (NaCl type, Zinc blende, Wurzite, CaF ₂ , and antifluorite
Week2	radius ratio rule and coordination number, Limitation of radius ratio rule, lattice defects, semiconductors, lattice energy and Born-Haber cycle
Week3	solvation energy and solubility of ionic solids, polarizing power and polarisability of ions, Fajan's rule. Metallic bond-free electron, valence bond and bond theories
Week4	S-Block Elements Comparative study, diagonal relationships, salient features of hydrides
Week5	solvation and complexation tendencies including their function in biosystems, an introduction to alkyls and arys.
Week6	Group No. 13 Comparative study (including diagonal relationship) of groups 13 elements, compounds like hydrides, oxides, oxyacids and halides of groups 13;
Week7	hydrides of boron-diborane and higher boranes, borazine, borohydrides.
Week8	p - Block Elements Comparative study (including diagonal relationship) of groups 14-I7 elements,
Week9	compounds like hydrides, oxides, oxyacids and halides of groups 14-17; fullerenes, carbides,.
Week10	fluorocarbons, silicates (structural principle), tetrasulphur tetranitride, basic properties of halogens, interhalogens and polyhalides.
Week11	Revision test

Head of Chemistry Deptt

Distribution Of Syllabus & Lesson Plan/Teaching Plan (2019-20)

Name Of Department: Chemistry

Class:B.Sc-1st Yr (Sem 2)

Paper: B (Organic Chemistry)

Two weeks left for MST tentative and one week for revision /queries for MST

TIME PEROID	TOPICS TO BE COVERED
Week1	Stereochemistry of Organic Compounds Concept of isomerism. Types of isomerism, Optical isomerisin-elements of symmetry, molecular chirality, enantiomers, stereogenic centrec, optical activity, properties of enantiomers, chiral and achiral molecules with two stereogenic centres, diastereomers, threo and erythro diastereomers, meso compounds, resolution of enantiomers, inversion, retention and racemization.
Week2	Relative and absolute configuration, sequence rules, D & Land R & S systems of nomenclature. Geometric isomerism-determination of configuration of geometric isomers, E & Z system of nomenclature
Week3	geometric isomerism in oximes and alicyclic compounds. Conformational isomerism-conformational analysis of ethane and n-butane
Week4	conformations of cyclohexane, axial and equatorial bonds, conformation of mono substituted cyclohexane derivatives
Week5	Newman projection and Sawhorse formulae, Fischer and flying wedge formulae. Difference between configuration and conformation
Week6	Nomenclature of benzene derivatives. Aromatic nucleus and side chain. Structure of benzene: molecular formula and Kekule stru e. Stability and carbon- carbon bond lengths of benzene, resonance structure, pi ture.
Week7	Aromaticity: the Huckel rule, aromatic ions. Aromatic electrophilic substitutiQn-general pattern of the mechanism, role of cr and complexes. Mechanism or nitration, halogenation, sulphonation, mercuration and Friedmann reaction. Energy profile diagrams. Activating and deactivating substituents, orientation and ortho/para ratio. Side chain reactions of borroad descriptions.
Week8	Methods of formation and chemical reaction of alkylbenzenes alkynyl benzenes.
Week9	Alkyl and aryl halides Nomenclature and classes of alkyl halides, methods of formation chemical reactions. Mechanisms of nucleophilic substitution reactions of alkyl halides, SN ¹ and Si reactions with energy profile diagrams.
Week10	Methods of formation of aryl halides, nuclear and side chain reactions. The addition elimination and the elimination-addition mechanisms of nucleophilic aromatic substitution reactions. Relative reactivities of alkyl halides vs ally!, vinyl and aryl halides.
Week11	Revision
, , , , , , , , , , , , , , , , , , , ,	

Principal
Govt. College ROPAR

(AJAY KUMAR) Head of Chemistry Deptt

<u>Distribution Of Syllabus & Lesson Plan/Teaching Plan</u> (2019-20)

Name Of Department: Chemistry

Class: 1st Yr (Sem 2)

Paper: C (PhysicalChemistry)

Two weeks left for MST tentative and one week for revision /queries for MST

TIME PEROID	TOPICS TO BE COVERED
Week1	Colloidal State Definition of colloids, classification of colloids Solids in liquids (sols): properties-kinetic, optical and electrical; stability of colloids protective action, Hardy-Schulze law, gold number.
Week2	Liquids in liquids (emulsions) types of emulsions, preparation, Emulsifiers. Liquids in solids, (gels) classification, preparation and properties inhibition. General applications of colloids.
Week3	Chemical Kinetics and catalysis and its scope, rate of a reaction, factors influencing the rate of a reaction-concentration, temperature, pressure, solvent, light, catalyst. Concentration dependence of rates, mathematical characteristics of simple chemical reactions-zero order,
Week4	first order, second order, pseudo order, half life and mean life. Determination of the order of reaction-s-differential method, method of integration, method of half life period and isolation method.
Week5	Radioactive decay as a first order phenomenon. Theories of chemical kinetics.
Week6	effect of temperature on rate of reaction. Arrhenius equation, concept of activation energy.
Week7	Simple collision theory based on hard sphere model, transition state theory (equilibrium hypothesis). Expression for the rate constant based on equilibrium constant and thermodynamic aspects.
Week8	Catalysis and general characteristics of catalytic reactions. Homogeneous catalysis, acid base catalysis and enzyme catalysis including their mechanisms, Michaelis Menten equation for enzyme catalysis and its mechanism.
Week9	Solutions, Dilute Solutions and Colligative Properties Ideal and non-ideal solutions, methods of expressing concentration of solutions, activity and activity coefficients. Dilute solution, colligative properties, Raoult's law, relative lowering of vapour pressure, molecular weight determination. Osmosis, law of osmotic pressure and its measurement, determination molecular weight from osmotic pressure
Week10	Elevation of boiling point and depression of freezing point, Thermodynamic derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Experimental methods for determining various colligative properties. Abnormal molar mass, degree of dissociation and association of solutes.
Week11	Revision Test

Principal
Govt. College, ROPAR

(AJAY KUMAR Head of Chemistry Deptt.